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Abstract
This paper presents some aspects of a scheme which uses
remote sensing measurements to control the simulations of a
coupled land surface process and passive microwave radiative
transfer model. Based on an iterative minimization procedure,
the schcmc estimates model input parameters or initial
conditions. The study focuses on the feasibility of the scheme
and its sensitivity to errors. It is shown that important
parameters can bc retrieved with the scheme, and that the
paramc(ers to which the simulations are most sensitive, are also
those which are more liable to bc retrieved satisfactorily in the
prescnsc of noise.

Introduction
Satellite remote sensing is generally considered potentially
useful for improving the estimation of important land
surface proccsscs (net primary productivity, heat and water
fluxes, CIC.)  over large areas. As the link between the
proccsscs and the remotely sensed radiances is not direct,
current efforts arc mainly devoted to relate the latter,
empirically or by the inversion of radiative transfer models,
to surface variables (soil moisture, Leaf Area Index (LAI),
surface tcmpcraturc, etc.), which in turn are used to estimate
the proccsscs  of interest. Our ongoing research is focused on
exploring ways by which different remote sensing data can
bc incorporated in a land surface process model. The
approach is an extension to natural vegetation, of methods
developed by agriculhrral scientists, whose intent was to use
remote sensing to cornplcmcnt  the performance of crop
growth rnodcls [1] [2]. In these rncthods,  estimations of land
surface proccsscs arc to bc provided by rnodcling,  and the
remote sensing data are used only to control the simulations
of the model. The approach is based on the coupling of a
land surface process model with radiative transfer models in
the visible/near infrared, active and passive microwave
domains. The control of the model simulations by remote
sensing data is then realiz.cd by minimizing the difference
bctwccn  observed and s imulated rcrnotc  s ens ing
mcasurcmcnts.
Many issues still rcrnain  to bc addressed before the method
can bc implcrncntcd  fully. In particular, the spatial scales at
which the surface proccsscs  or charactcri sties arc rnodclcd  arc
usually not compatible with the scales of the satellite data
[3]. Often, the scales at which physical principles apply arc
local rather than regional. The extrapolation of a locally
validated process model to regional applications cannot bc
readily justified or verified, and is in that sense
unsatisfactory. Another important issue is the propagation

of errors in the coupled surface process and rad i ati vc transfer
model when used in a retrieval scheme [3]. Both issues are
currently under investigation; this paper presents some
aspcc[s  of the retrieval scheme using a coupled process and
passive microwave radiative transfer model, its feasibility
and its sensitivity to errors. After a brief presentation of the
models used, the retrieval schcmc is outlined, The numerical
expcrilncn[ is then dcscribcd and the results obtained are
discussed.

Model description
The ralionalc for coupling a land surface process model with
a radiative transfer model is to obtain simulations of remote
sensing observations and of the relevant proccsscs  at the
same time, establishing the link bctwccn the processes and
remote sensing obscrvablcs,  implicitly by modeling. The
coupling is primarily realized by ensuring that the land
surface process also simulates surface variables or
charac{cristics used as inputs in the radiative transfer model.

Land Su~ace  Process Model
The ecosystem chosen to evaluate the methodology is a
scrni-arid grassland as typically found in the Sahel, The
hcrbaccous layer is composed of annuals whose emcrgcncc
is triggered by the first rains which normally occur in June.
The rainy season itself lasts about 3 months, and within
two months after the last rains, the hcrbaceous  vegetation
has dried out. The surface proccsscs arc grouped into two
submodels. The first onc dcscribcs  the water and energy
budgets, and has a onc hour time step. The other onc groups
the processes related to vegetation growth, and runs with a
daily ti mc step. The coupling of the two submodcls is done
by the exchange of variables like the daily average canopy
temperature and water potential, Leaf Area Index and
vegetation height (Fig. 1). The energy partitioning in the
sparse vegetation follows the formulation of [4]. The soil
tcmpclaturc  and moisture tirnc dependent equations follow

, those of [5]. I’hc systcm is solved by writing an energy
budget separately for the canopy and the soil, integration in
time is carried out using the Crank-Nicholson method after
lincari~.ation of non linear terms. The vegetation growth
submodcl  is taken from [6]. Vegetation growth is obtained
on a (iaily basis as the result of photosynthesis minus
respiration and sencsccnsc, and particularly in these regions,
is closely controlled by water availability.
Micro  \tave Radiative Transfer  Model
I’hc passive rnicrowavc  model used in this study is from [7].
It was originally dcvclopcd  to interpret spacecraft microwave
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data, and particularly to study the effects of surface
tcmpcraturc  and atmospheric variability on the SMMR
(Scanning Multichannel Microwave Radiometer) response to
soil moisture and vegetation. The microwave brightness
temperature measured by the radiometer is composed of (i)
the upwclling  atmospheric emission, (ii) the surface
emission attenuated by the atmosphere, and (iii) the cosmic
background emission and the downwclling  atmospheric
emission, rcficctcd  at the surface and attenuated by the
atmosphere, The main surface or atmospheric variables
which can significantly inftucncc the brightness temperature
arc : the surface rcftcctivity rp, the single scattering albcdo,
(r), the opacity of the atmosphere la, the canopy opacity
‘tCp, the vegetation cover fraction C, the ground surface
temperature Ts and the canopy tcrnpcraturc  Tc. The
subscript p stands for polarization H or V.
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Figure 1: Diagram showing the two subrnodcls which form the
land surface proccsscs model, their respective tirnc steps,
inputs, outputs and the variables through which they
communicate.

Description and testing of retrieval scheme
The retrieval schcmc relies on the assumption that both the
land surface process model and tbc radiative transfer model
arc formally correct, and that only some parameters or initial
values of state variables arc not known. The scheme uscs an
iterative proccdurc  to estimate these unknowns by
minimizing the difference between observed and simulated
remote sensing measurements. One way of verifying
whether the assumption holds, is to run the model on a test-
sitc where a significant amount of data are available to
describe the site, where mctcoro]ogical  da[a necessary to run
the process model have been acquired continuously, and
where a maximum number of biophysical  variables and
proccsscs have been followed and measured throughout a
growing season. Then, if the radiative transfer model, using
a description of the surface given by the process mode], can
correctly simulate the brightness tcmpcraturcs  actually
observed, there is cvidcncc that the retrieval scheme may bc
applicable to other Icss well-known sites to estimate similar
proccsscs.  However, as stated earlier, scale issues render this
verification difficult. Here, for the purpose of the study,
synthetic data arc used instead of actual remote sensing
mcasurcmcnts. The simulations of the process model carried
out for the 1992 growing season in a grassland site inside
the 1 ‘x 10 grid square of the Ilapcx-Sahel cxpcrimcnt  [8]

provide the microwave model with IJIOS(  of the inputs
necessary to simulate temporal profiles of brightness
tcrnpcratures. For example, soil moisture and tcmpcraturc,
vegetation cover fraction, and canopy temperature are
directly simulated, whereas vegetation water content is
estimated from the arnourrt of green biomass. The synthetic
data obtained correspond to an ideal case where the values of
all the parameters used by the models to produce thcm arc
regarded as the true values.
The schc.mc uses the llavidon-Flctchcr-Powell  minimization
procedrrl  e as described in [9]. Starting from an initial guess
of the parameters to bc rctricvcd, the merit function E* is
minimized, calculated here using microwave brightness
tcmpctat ures :

C* = ~ (Tboh, - Tb,i,,,  )2 (1)
i=l

The proccdurc  requires the evaluation of function derivatives
and is normally more cfficicnt  in terms of the number of
iterations needed, than other methods which do not use the
gradient information, like the downhill Simplex or Powell
[9]. Nulnerically,  input parameters of both the radiative
transfer model and the land surface process model can bc
retricvc(i  at the same time, as shown in the following test.
However, in a rcai application, once enough confidence is
gained in the simulations of the radiative transfer model, it
is preferable to apply the. scheme with process model
paramctm-s  only, as the reliable simulations of the processes
depend primarily on a correct estimation of these parameters.
The firs[ testing of the schcmc is to verify whether certain
model parameters arc rctricvablc. Two important parameters
related to vegetation arc chosen: the percentage of C3 (and
that of C4 by differcncc) vegetation present, a parameter of
the vegetation growth submodel,  and a coefficient A related
to canopy structure, on which the canopy opacity used in
the microwave mode] dc.pcnds.  In the table shown below,
rctricveci values arc compared to ‘real’ values when (1)
%C3/C4 is retrieved alone, (2) A is retrieved alone and (3)
the two parameters are retrieved together. Although the
number of iterations incrcascs significantly with the number
of parameters rctricvecl,  the accuracy of the retrieval is
maintained.

Real observational data however, are acquired with an
inevitable amount of noise, and it is important to assess
how sensitive the retrieval is to the noise present. It would
aiso bc interesting to se.c how well a parameter is retrieved
when the sensitivity of the simulations to that parameter is
high or low. The second test is carried out with two
parameters which arc used to calculate surface reflectivity for
each frequency and poiari~,ation in the microwave model.
‘Ilc reftcctivity  is wtittcn as being linearly related to soil
moisture, with parameter a as the offset and c the slope for
H polari ration, and parameters b and d, the offset and slope



for V polarization. Figure 2 show  the sensitivity of the
simulated brightness temperatures at 37 GHZ with respect to
the four parameters.
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Figure 2: Sensitivity of the simulated microwave brightness
temperatures at 37 GHz with respect to the parameters a, b, c, d.
h!ote that 5% of the brightness temperature corresponds to
abou: 15 K and is therefore quite significant.
TM figure clearly indicates that the simulations are more
sensitive to the offsets in tJre linear relationship between
surface reflectivity and soil moisture, than they are to. the
slopcx, and more so for horizontal than vertical polarization.
In order to test the effect of noise on the retrieval of these
parameters, the synthetic data are contaminated with
normally distributed noise of zero mean and known standard
deviations [10]. For each noise level definuf  with l%, 3%
and 590  standard deviations, forty noisy sets are generated
and used to retrieve the four parameters, The sensitivities of
the retrieved parameters to the different noise levels are
defined as coefficients of variability (the standard deviation
divided by the mean value), and are each calculated on a set
of forty retrieved values.
Figure 3 shows the sensitivities of the retrieved parameters
with respect to noisy data. fie slope parameters c and d are
found to be more sensitive to noise than the offset
parameters a and b. ~is would imply that parameters which
can significantly influence the simulation of brightness
temperatures (which therefore need to be estimat&J more
accurately) are more liable to be satisfactorily retrieved in

spite of the presence of noise. However, this tendency has to
be confirmed on real data in which the noise present maybe
of a n~ture different from the one used in the study,

Conclusion
The theoretical feasibility of using remotely sensed data to
control simulations of biophysical processes has been
shown. The sensitivity and retrievability of key parameters
of the coupled biophysical-radiative  transfer scheme have
been demonstrated. Techniques for temporal and spatial
scaling between models and observations must be
investigated further for practical implementation of the
method.

Error sensitivity of retrieved parameters/noisy ohs.
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Figure 3: Sensitivity of the four retreived parameters to
different levels of noise in the observational data,
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